Hilbert-tér

A Wikipédiából, a szabad enciklopédiából

A Hilbert-tér a modern matematika fontos fogalma: olyan skalárszorzatos vektortér, amely teljes a skalárszorzat által definiált normára nézve. A Hilbert-tereket a funkcionálanalízis tanulmányozza. A Hilbert-térnek alapvető jelentősége van a kvantummechanika megalapozásában, jóllehet a kvantummechanika sok alapvető tulajdonsága megérthető a Hilbert-terek mélyebb megértése nélkül.[1] A Hilbert-tér egyben Banach-tér is, melynek normáját skalárszorzat indukálja.

Szerkezetét egyértelműen meghatározza a Hilbert-dimenziója. Ez tetszőleges kardinális szám lehet. Ha a dimenzió véges, akkor euklideszi vektortérről van szó. Sok területen, például a kvantummechanikában a megszámlálhatóan végtelen dimenziós Hilbert-teret használják. A Hilbert-tér egy eleme megadható a dimenziónak megfelelő számú valós, vagy komplex koordinátával. A vektorterekhez hasonlóan, ahol egy Hamel-bázisban megadott koordináták véges kivétellel nullák, egy Hilbert-tér ortonormált bázisában csak megszámlálható sok koordináta különbözhet nullától, és a koordináták négyzetesen összegezhetők.

A Hilbert-tereken értelmezett skalárszorzat topologikus szerkezettel is ellátja a teret; ez lehetővé teszi a határértékek megközelítését, szemben az általános vektorterekkel.

Bevezetés[szerkesztés]

David Hilbert

A Hilbert-teret David Hilbertről nevezték el, aki az integrálegyenletekkel kapcsolatban tanulmányozta azokat. Az elnevezés eredete „der abstrakte Hilbertsche Raum” Neumann Jánostól származik, a nemkorlátos hermitikus operátorokról szóló 1929-es híres cikkéből. Neumann volt talán az a matematikus, aki legtisztábban látta a jelentőségét, annak a megtermékenyítően ható munkájának következtében, mellyel a kvantummechanikát szilárd alapokra helyezte. A „Hilbert-tér” elnevezést hamarosan mások is elfogadták, például Hermann Weyl az 1931-ben publikált A csoportok és a kvantummechanika elmélete (The Theory of Groups and Quantum Mechanics) című könyvében.

Az absztrakt Hilbert-tér elemeit „vektoroknak” nevezik. A kvantummechanikában például egy fizikai rendszert egy „hullámfüggvényekből” álló komplex Hilbert-tér ír le, mely hullámfüggvények a rendszer egyes állapotait írják le, a hullámfüggvények egy L-2-tér elemei a kvantummechanika modern megfogalmazásában. A kvantummechanikában gyakran használt síkhullámok és kötött állapotok Hilbert-terére a formálisabb kifeszített Hilbert-tér néven hivatkoznak.

Definíció[szerkesztés]

A H vektorteret a T test (valós vagy komplex számtest) feletti Hilbert-térnek nevezzük, ha értelmezve van rajta egy Hermite-féle alak (belső szorzat), amely egy teljes normált teret indukál.

Azaz létezik egy leképzés: , amely minden -beli , , -re és minden -beli -ra a következőket teljesíti:

  1. (nemnegatív);
  2. (definit);
  3. (hermitikus - valós esetben a konjugálás elhagyható);
  4. és (lineáris a második argumentumban).

Minden, az előbbi tulajdonságokat teljesítő, belső szorzatos térben értelmezhető egy ||.|| norma következőképpen:

.

H Hilbert-tér, ha H erre a normára nézve teljes, azaz minden H-beli Cauchy-sorozat konvergál.

Megjegyzések:

Példák[szerkesztés]

  • Az koordinátatér az valós skalárszorzattal
  • A koordinátatér az skalárszorzattal
  • A valós vagy komplex mátrixtér a Frobenius-skalárszorzattal
  • A Szoboljev-tér minden esetén. Ezek képezik a parciális differenciálegyenletek megoldáselméletének alapját.
  • A Hilbert-Schmidt-operátorok tere.
  • A Hardy-tér és a valós Hardy-tér.
  • Az sorozattér, melyet azok a sorozatok alkotnak, ahol a sorozat elemeinek négyzetösszege véges. David Hilbert ezt a teret vizsgálta. Fontossága abban áll, hogy minden szeparábilis végtelen dimenziós Hilbert-tér izometrikusan izomorf -tel.
  • A négyzetesen integrálható függvények tere az skalárszorzattal.
  • A majdnemperiodikus függvények tere, ami a következőképpen definiálható: Legyen , ehhez tekintjük azokat az függvényeket, ahol . Ellátjuk az teret az skalárszorzattal, így prehilbertteret kapunk. Ezt a teret teljessé téve jutunk az Hilbert-térhez, ami nem szeparábilis.

Ortogonalitás[szerkesztés]

Két vektort ortogonálisnak mondunk, ha , gyakori jelölés: .

Egy S halmazt H-beli ortogonális rendszernek nevezünk, ha , és . Ha egy ortogonális rendszer nem bővíthető (maximális), akkor ortogonális bázis. Az ortogonális bázisok lineáris burka sűrű a Hilbert-térben. A lineáris algebrában megszokott értelemben ezek csak véges dimenziós esetben bázisok.

Egy S halmazt H-beli ortonormált rendszernek nevezünk, ha , és , ahol a Kronecker-delta. A Zorn-lemmával belátható, hogy minden Hilbert-térnek van ortonormált bázisa.

Egy véges ortonormált rendszerre érvényes a Pitagorasz-tétel és a Bessel-egyenlőtlenség (mint minden belső szorzatos térben). Azaz minden x-re H-ban:

Pitagorasz:

Bessel:


Bázis[szerkesztés]

Definíció: A H Hilbert-tér egy maximális ortonormált rendszerét ortonormált bázisnak nevezzük. Azaz egy ortonormált bázis, ha B ortonormált rendszer, és B bármely -val való bővítés után, már nem ortonormált rendszer.

A Zorn-lemma (illetve a kiválasztási axióma) használatával megmutatható, hogy minden Hilbert-térnek van ortonormált bázisa.

Ha y egy H Hilbert-térbéli vektor és egy ortonormált bázisa H-nak, ahol I egy tetszőleges indexhalmaz, akkor:

, ahol csak megszámlálható sok -re nem nulla, és az összegzés független a sorrendtől. y kifejezése bázisvektorok soraként egyértelmű. Továbbá:

(Parseval tétel).

Alterek[szerkesztés]

Egy Hilbert-altér egy Hilbert-tér olyan részhalmaza, ami a Hilbert-térben értelmezett vektorösszeadás, skalárral szorzás és skalárszorzás leszűkítésére szintén Hilbert-tér. Ez azt is jelenti, hogy altere, mint vektortérnek, hiszen ezek a kikötések feltételezik a nullvektor tartalmazását, és zárt a vektorösszeadásra és a skalárral szorzásra. Emellett még a skalárszorzásra is teljesnek kell lennie; ez ekvivalens azzal, hogy topológiai értelemben zárt. Emiatt a Hilbert-altereket zárt alterekként is emlegetik, szemben az egyszerűen csak altérként említett vektorterekkel. Általában ezek az alterek skalárszorzatos vektorterek, melyek sűrűek egy Hilbert-térben, ami lezárással kapható. Lehetséges Hilbert-alterekre hányadosteret képezni, ekkor szintén Hilbert-térhez jutunk.

Ez hasonló a Banach-terek esetéhez, melyek vektortéri értelemben vett alterei normált terek. Egy fontos különbség a projekciós tétel: Adva legyen egy Hilbert-tér, amiben kiválasztunk egy elemet, és egy Hilbert-alteret. Ekkor a Hilbert-altérben egyértelműen van egy vektor, melynek az adott vektortól mért távolsága minimális. Banach-terekben ez általában már véges dimenzióban sem igaz. Ez lehetővé teszi Hilbert-altér hányadosterének kanonikus azonosítását egy Hilbert-altérrel, ez az ortogonális komplementer; és az ortogonális vetítés bevezetését is. Egy Hilbert-altér ortogonális komplementere egy komplementer Hilbert-altér; azonban Banach-alterekhez általában nincs komplementer altér.

Definíció: Legyen , ekkor definiáljuk S ortogonális komplementerét:

.

Tétel: Legyen H egy Hilbert-tér, M pedig egy zárt altér H-ban. Ekkor

Konjugált Hilbert-tér[szerkesztés]

Komplex Hilbert-terek esetén a skalárszorzás nem szimmetrikus; lineáris a második argumentumban, és szemilineáris az elsőben. Azonban definiálható a konjugált Hilbert-tér, a következőképpen: Legyen Hilbert-tér, és legyen a értelmezve ugyanazon az alaphalmazon, és legyen a vektorok összeadása is ugyanaz, mint -ban. A többi művelet:

  • Skalárral szorzás:
  • Skalárszorzás: .

Ezekkel a műveletekkel szintén Hilbert-tér, konjugált Hilbert-tere. A konjugált Hilbert-tér konjugált Hilbert-tere, az eredeti Hilbert-tér.

Hilbert-terek közötti leképezések[szerkesztés]

A funkcionálanalízisben vizsgálnak olyan terek közötti leképezéseket is, amelyek megtartják a terek struktúráját. Ezek a leképezések megtartják a vektortér struktúrát is, azaz lineáris leképezések, melyeket a funkcionálanalízisben lineáris operátoroknak neveznek.

A Hilbert-terek közötti lineáris operátorok fontos osztálya a folytonos lineáris operátoroké. Ezek megtartják a topologikus struktúrát, így a konvergenciát is. További fontos tulajdonságok valamilyen értelmű korlátosságot feltételeznek. A korlátosság ekvivalens a folytonossággal; így sokszor egyszerűen csak folytonos operátorokként emlegetik őket. A kompaktság egy erősebb követelmény. A Schatten-Neumann-osztályok a kompakt operátorok osztályának valódi alosztályai. Az operátorok osztályain szintén definiálnak normákat és operátortopológiákat.

Az unitér operátorok a Hilbert-terek természetes izomorfizmus fogalmát definiálják, mivel ezek éppen az izomorfizmusok a Hilbert-terek kategóriájában, a skalárszorzattartó lineáris leképezésekkel, mint morfizmusokkal. Ezek konkrétan a lineáris szürjektív izometriák, a szögek és hosszak megőrzésével.

Riesz reprezentációs tétel[szerkesztés]

Definíció (duális tér): Egy H Hilbert-tér H* duális terén, a H-n értelmezett folytonos lineáris funkcionálok Banach-terét értjük, azaz

a folytonosság (mivel normált terek közötti lineáris leképzésről van szó) egyenértékű a leképzés operátornorma szerinti korlátosságával, azaz egy lineáris függvényre igaz:

Tétel (Riesz reprezentáció): Minden -hez létezik pontosan egy , úgy hogy minden x-re H-ban, és
.

Vagyis a tétel azt mondja ki, hogy H duális tere egy Hilbert-tér, amely izometrikusan izomorf H-hoz. Ez az egyik leglényegesebb tulajdonsága a Hilbert-tereknek, és ez a tulajdonság különbözteti meg őket nagyban az általánosabb Banach-terektől. Komplex esetben a tétel hasonlóan működik, azzal a különbséggel, hogy a leképezés szemilineáris, tehát az operátor is szemilineáris. Mindkét esetben a Hilbert-tér izomorf a duális terével (egy szemiunitér operátor felbontható egy unitér és egy szemiunitér operátorra), így a Hilbert-tér izomorf a biduális terével, tehát a Hilbert-terek reflexívek.

Ezen tétel felhasználásával vezetik be a fizikusok a bra-ket írásmódot, mely a Hilbert-tér elemeit módon jelöli, és ket-vektoroknak nevezi őket, a duálvektorokat pedig módon, melyeket bra-vektoroknak nevez. Két vektor skaláris szorzata, pedig a duálvektor hattatása a vektorra: , azaz a duálvektort a vektor mellé írjuk, így a bra és a ket vektor képzi nyelvi humorral a bracket-et, azaz a skaláris szorzat jelölésére használt zárójelet.

A tételből következik, hogy egy -ből -ba menő lineáris operátor adjungált operátora értelmezhető, mint egy -ból -be menő lineáris operátor. Így egy operátor felcserélhető adjungált operátorával; az efféle operátorok alkotják a normális operátorok osztályát. Egy Hilbert-tér operátorainál fennáll annak a lehetősége, hogy egy operátor adjungált operátora önmaga. Ezek az önadjungált operátorok.

Egy Hilbert-téren több fent bevezetett operátorosztály operátoralgebrát alkot. Az adjungálással, mint involúcióval és egy megfelelő normával involutív Banach-algebrákat alkotnak. Egy Hilbert-tér folytonos lineáris operátorai az adjungálással és az operátornormával C*-algebrát alkot.

Alkalmazások[szerkesztés]

Minden Hilbert-tér egyben Banach-tér is (de fordítva nem igaz).
Minden L-2 tér egy Hilbert-tér.

Minden véges dimenziós belső szorzattal rendelkező tér (mint az Euklideszi-tér a szokásos skalárszorzattal) Hilbert-teret alkot. Valójában a végtelen dimenziós terek jelentősége az alkalmazások területén sokkal nagyobb. Pár példa ezekre:

A belső szorzat teszi lehetővé a „geometriai” látásmód megőrzését, és a véges dimenziós terekben megszokott geometriai nyelvezet használatát. Az összes végtelen dimenziós topologikus vektortér közül a Hilbert-terek a „legjobban viselkedőek” és ezek állnak legközelebb a véges dimenziós terekhez. A funkcionálanalízis szempontjából a Hilbert-terek speciális és egyszerű szerkezetű terek egy osztályát alkotják.

A Fourier-analízis egyik célja, hogy egy adott függvényt adott alapfüggvények kombinációjaként írjunk fel, azaz olyan (esetleg végtelen) összegként, melyben az alapfüggvények többszörösei a tagok. Ez a probléma absztrakt módon vizsgálható Hilbert-terekben: minden Hilbert-térnek van ortonormált bázisa, és a Hilbert-tér minden eleme egyféleképp írható fel a báziselemek kombinációjaként, azaz olyan összegként, melyben a bázisvektorok többszörösei (skalárszorosai) szerepelnek.

Megjegyzés[szerkesztés]

A német nyelvterületen több egyetemen is van Hilbert-térnek nevezett terem.[2][3][4]

Ajánlott irodalom[szerkesztés]

  • Reed-Simon, Methods of modern mathematical physics, 1. volume: Functional Analysis, Academic Press, INC.

Források[szerkesztés]